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1 Introduction
OpenGL is an API specification, developed and maintained by the Khronos Group. It specifies the input, output and
performance of all functions, but the implementation is carried out by graphics card manufacturers. Each graphics card
supports specific versions of OpenGL, which are included in its drivers. Higher versions of OpenGL are generally sup-
ported only by the latest GPUs. OpenGL supports extensions, in which graphics card manufacturers can supply additional,
GPU-specific functionality or optmizations. The developer has to query whether any of these extensions are available be-
fore using them:

if(GL_ARB_extension_name) {
// Do hardware supported modern stuff

}
else {

// Do it the old OpenGL way
}

Before version 3.0, OpenGL only supported a fixed-function graphics pipeline in what is called immediate mode, which
was easy-to-use but highly inflexible. Version 3.0 introduced programmable shaders that allowed programming different
stages in the graphics pipeline, referred to as Modern OpenGL. Immediate mode functionality was deprecated in version
3.2, leaving OpenGL’s core-profile mode, which is a division of OpenGL’s specification that removed all old deprecated
functionality.

OpenGL is by itself a large state machine: a collection of variables that define how OpenGL should currently operate,
referred to as the OpenGL context. We use state-changing functions to manipulate objects, which are collection of options
that represents a subset of OpenGL’s state. Objects as abstractions were introduced because OpenGL at its core is a C-
library, and many of C’s language constructs do not translate well to other high-level programming languages. Another
slight downside of OpenGL being a C-library is that C does not support function overloading, and therefore OpenGL
often defines multiple functions which you would expect to be overloaded. For example, if a function supports multiple
data types, the function name likely needs a postfix, e.g. glUniform4f() expects four floats.

2 Setup

2.1 GLFW
In order to render, we need to create an OpenGL context and an application window. Since these operations are OS-specific
and OpenGL tries to abstract itself from these operations, there are libraries that create a window, define a context, and
handle user input. GLFW (Graphics Library FrameWork) is a basic one for OpenGL window and input and the one
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we’ll use here, but others are SDL(2) (bigger package that also supports sound, fonts, texture imports, some rendering
abstractions), GLUT (very old and generally avoided) and SFML (generally avoided). GLFW needs to be built (with
CMake) and linked (by adding glfw3.lib as a dependency in the linker settings), but they provide some precompiled
binaries and header files on their website. Include GLFW using #include <GLFW/glfw3.h>.

2.2 GLAD
The location of OpenGL’s functions are driver and OS specific, and therefore need to be queried during runtime. While
you can manually retrieve the location of the functions you need and store them in function pointers, there are libraries
that do this. We’ll use GLAD; there’s also GLEW but it doesn’t seem very popular online. It offers a webservice where
you can specify for which programming language (likely C++) and version of OpenGL you’d like to define and load
all relevant OpenGL functions. Copy both include folders in your include directory (set in linker settings) and copy the
glad.c file in your project. You should now be able to include GLAD using #include <glad/glad.h>. Include it before
including GLFW; the include file for GLAD includes the required OpenGL headers behind the scenes, so those can be
used by other includes that require OpenGL.

To create a GLFW window, initialize GLAD, and start rendering, define main() as follows:

#define WIDTH 800
#define HEIGHT 600

glfwInit(); // Initialize GLFW
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); // Give option GLFW_CONTEXT_VERSION_MAJOR value 3
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3); // Tell GLFW to use OpenGL 3.3
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); // Tell GLFW to only use the core

profile
//glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); // Use on macOS

GLFWwindow* window = glfwCreateWindow(WIDTH, HEIGHT, "App name", NULL, NULL);
if (window == NULL)
{

std::cout << "Failed to create GLFW window" << std::endl;
glfwTerminate();
return -1;

}
glfwMakeContextCurrent(window); // Make the window context the main context on the current thread

// Initialize GLAD in order to use OpenGL functions
// Pass GLAD the GLFW function glfwGetProcAddress (GLFW defines the correct function based on OS),

which loads the address of the OS-specific OpenGL function pointers
if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
{

std::cout << "Failed to initialize GLAD" << std::endl;
return -1;

}

glViewport(0, 0, WIDTH, HEIGHT); // Tell OpenGL the size of the rendering window; the first two
parameters set the location of the lower-left corner. OpenGL uses these dimensions to map from
(-1, 1) to (0, WIDTH) and (0, HEIGHT).

glfwSetFramebufferSizeCallback(window, framebuffer_size_callback); // Register callback function at
GLFW, defined below

// Render loop
while(!glfwWindowShouldClose(window))
{

glClearColor(0.0f, 0.0f, 0.0f, 1.0f); // Specify the color to clear the screen with
glClear(GL_COLOR_BUFFER_BIT); // Clear the specified buffer with the above color (black)

render();
processInput(window); // Call our function defined below
glfwSwapBuffers(window); // Swap the color buffer and show it as output to the screen
glfwPollEvents(); // Check if any (input) events are triggered, update the window state, and

call corresponding callback functions
}

glfwTerminate(); // Delete all GLFW resources that were allocated
return 0;
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The framebuffer_size_callback() callback function looks like:

// Define callback function that GLFW calls each time the window is resized
void framebuffer_size_callback(GLFWwindow* window, int w, int h) {

glViewport(0, 0, w, h); // Pass the new dimensions to OpenGL
}

The processInput() function could be something like:

// Check whether ESC is pressed and, if so, close the window
void processInput(GLFWwindow *window) {

if(glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS) {
glfwSetWindowShouldClose(window, true);

}
}

glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED); // Tell GLFW to capture the mouse, but
make it invisible

void mouse_callback(GLFWwindow* window, double xpos, double ypos) {
float xoffset = xpos - lastX;
float yoffset = lastY - ypos; // Reversed since y-coordinates range from bottom to top
lastX = xpos;
lastY = ypos;

}
glfwSetCursorPosCallback(window, mouse_callback); // Register mouse callback with GLFW

void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
glfwSetScrollCallback(window, scroll_callback); // Register scroll callback with GLFW

A list of all available GLFW window handling options is available online.

2.3 GLM
GLM (OpenGL Mathematics) is a header-only library, meaning you can download and copy it to your include folder and
include it in your code:

#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>

It brings the vector and matrix manipulation functionality of GLSL, and more, to your host code. For example, to translate
a vector (i.e. multiply the vector by a translation matrix):

glm::vec4 vec(1.0f, 0.0f, 0.0f, 1.0f);
glm::mat4 matIdentity = glm::mat4(1.0f); // Identity matrix
glm::mat4 matTranslate = glm::translate(matIdentity, glm::vec3(1.0f, 1.0f, 0.0f)); // Multiply

matIdentity by a translation matrix created from the given vector
vec = matTranslate * vec; // Translate vec

glm::mat4 matTransform = glm::mat4(1.0f); // (Will become a) scale + rotation matrix
matTransform = glm::rotate(matTransform, glm::radians(90.0f), glm::normalize(glm::vec3(1.3, 0.5,

2.5))); // Rotate 90 degrees around the given (unit) vector
matTransform = glm::scale(matTransform, glm::vec3(0.5, 0.5, 0.5)); // Scale by 50%

Getting GLM variables to the shaders is easy (this will make sense when we talk about shaders in 5.3):

unsigned int location = glGetUniformLocation(shaderProgramHandle, "matrix");
glUniformMatrix4fv(location, 1, GL_FALSE, glm::value_ptr(matTransform)); // Send 1 matrix without

transposing it. GLM data doesn’t always match OpenGL’s specification, so we first convert it

3 Coordinate systems
A vertex goes from its definition in local space through multiple coordinate systems to screen space before it is rendered.
The following lists the different coordinate systems (as numbered items) and the transforms between them (as arrow
items):
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1. Local space, or object space; the coordinates of an object are relative to the object’s local origin. This is how an
object is defined (e.g. with Blender).

↓ Model matrix; translates, scales and/or rotates your object to place it in the world.

2. World space; the coordinates of an object are relative to the world or scene’s global origin. All objects are now in
the same coordinate system.

↓ View matrix, or LookAt matrix; translates and/or rotates your object to place it in front of (or rather, relative to) the
camera. It move the entire scene around inversed to where the camera is in world space. OpenGL itself doesn’t
have a notion of a camera, but we define it by its position in world space, the opposite of the direction it’s looking
at (obtained by subtracting the viewing target from the camera position), a vector pointing to the right from the
camera (obtained as a cross product of the direction vector and the (0, 1, 0) "world-up" vector) and a vector
pointing upwards from the camera (obtained as a cross product of the direction vector and the right vector). From
these, we can obtain a view matrix:

V =


rx ry rz 0
ux uy uz 0
dx dy dz 0
0 0 0 1

 ∗


1 0 0 −px

0 1 0 −py

0 0 1 −pz

0 0 0 1

 (1)

where r is the right vector, u is the up vector, d is the inverse direction vector, and p is the position vector. What
happens is we first translate all world-space coordinates to have the camera as origin, after which we multiply them
with the inverse of the view-space’s change-of-basis vector (which is equal to its transpose, since it’s an orthonormal
matrix) in order to get their view-space equivalents. GLM creates this matrix for you using:

glm::mat4 view = glm::lookAt(posCamera, posTarget, glm::vec3(0.0f, 1.0f, 0.0f));

3. View space, eye space or camera space; the coordinates are relative to the camera’s point of view. The camera itself
is the origin, positive x-axis extends the the right, the positive y-axis extends up, and the negative z-axis extends
away from the camera’s direction (i.e. OpenGL uses a right-handed system).

↓ Projection matrix; maps or projects coordinates within a specified range to clip space coordinates with respect to a
so-called a frustum. There are two types of projection:

• Orthographic projection; objects further away are not smaller. Creates a rectangular frustum. This projec-
tion doesn’t change the w component of coordinates, which means perspective division doesn’t do anything,
making the clip space coordinates equal to NDC.

glm::mat4 proj = glm::ortho(left, right, bottom, top, near, far); \\ Define
projection matrix with the specified floats

• Perspective projection; objects further away are smaller. Creates a rectangular pyramid as frustum, that grows
in girth away from the camera.

glm::mat4 proj = glm::perspective(glm::radians(fov), (float) resWidth / (float)
resHeight, near, far);

4. Clip space; the coordinates are clip space coordinates relative to a frustum ranging from -w to w in the frustum.
Coordinates outside of the frustum are clipped, but if only part of a triangle is clipped it is reconstructed it as one
or more triangles that still fit in the frustum. This is the coordinate system in which the vertex shader should output
its coordinates.

↓ Viewport transform; does perspective division to get the clip space coordinates to normalized device coordinates
(NDC) that range from -1 to 1 by dividing the x, y, and z components by the w component. This is done auto-
matically by OpenGL after the vertex shader. These NDC are mapped to screen coordinates (using the settings of
glViewport()) and turned into fragments.

5. Screen space; the coordinates are pixel coordinates ranging from 0 to your window resolution. These are sent to the
rasterizer to be turned into fragments.

4



4 Buffers
A buffer is simply an object that manages a certain piece of GPU memory. Meaning is given to a buffer by binding it to a
target, e.g. GL_ARRAY_BUFFER or GL_ELEMENT_ARRAY_BUFFER. OpenGL internally stores a reference to the buffer per target
and, based on the target, processes the buffer differently.
The default way of getting data to a buffer is with glBufferData(), which copies data from the CPU to the GPU. If a
nullptr is passed, the memory is only reserved/allocated but not initialized. We can then fill specific regions of a buffer
with glBufferSubData(), which takes an offset and a size.
If a buffer doesn’t need to be resized, use glBufferStorage() for performance reasons.
Another way of copying data is by mapping a buffer, useful for directly mapping data to a buffer without first storing it in
temporary memory (e.g. copying directly from a file):

glBindBuffer(GL_ARRAY_BUFFER, bufferHandle);
void *ptr = glMapBuffer(GL_ARRAY_BUFFER, GL_WRITE_ONLY); // Get pointer
memcpy(ptr, data, sizeof(data)); // Copy data into memory
glUnmapBuffer(GL_ARRAY_BUFFER); // Tell OpenGL we’re done with the pointer

Lastly, we can copy data from one buffer to another using glCopyBufferSubData(), which copies from the buffer bound
to the specified read target to the buffer bound to the specified write target. For cases where both buffers happen to have
the same target, OpenGL introduced two more buffer targets called GL_COPY_READ_BUFFER and GL_COPY_WRITE_BUFFER.
You don’t have to use both of them; you could for example bind one of your equityped buffers to GL_COPY_READ_BUFFER

and then write to the other bound to its original target.

4.1 VBOs
We get vertices to the vertex shader using vertex buffer objects (VBOs), which can store a large number of vertices in the
GPU’s memory that are send at once, rather than copying one vertex at a time. VBOs is the common term for a normal
buffer object when it is used as a source for vertex array data, but it is no different from any other buffer object. Vertices
are defined by, or represented as vertex attributes; a vertex attribute is an input variable to a shader that is supplied with
per-vertex data, for example positions, normals, or texture coordinates. The process of creating a VBO is highly similar
to that of creating any other OpenGL object, so it’s a pattern you’ll see many times:

unsigned int vboHandle;
glGenBuffers(1, &vboHandle); // Generate 1 ID and store it in an int
glBindBuffer(GL_ARRAY_BUFFER, vboHandle); // Bind the VBO of type GL_ARRAY_BUFFER and initializes

it. OpenGL has many other types of buffer; at any point, one buffer per type may be bound. In
practice, the type doesn’t matter for buffers as they’re typeless; it is at most a driver or
code reader hint.

// glCreateBuffers(1, vboHandle) // Only for OpenGL 4.5 and up. Same thing as glGenBuffers +
glBindBuffer. The reason it doesn’t take a target is because buffer objects are not typed and
no-one cares how it is initialized.

glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW); // Copies vertex data
from vertices (a float[]) to buffer currently bound to GL_ARRAY_BUFFER.

The last argument specifies how the data should be used and how the GPU can manage it: GL_STREAM_DRAW means the
data is set once and used at most a few times, GL_STATIC_DRAW means the data is set once and used many times, and
GL_DYNAMIC_DRAW means the data is changed a lot and used many times (it will be stored in memory that allows for faster
writes).

Next, we tell OpenGL the structure of the data and what part of our input data goes to which vertex attribute in the vertex
shader. Specifying a vertex attributes layout is done as follows (this example is for a tightly packed buffer containing only
positions, in which there are no other values in between vertices):

glEnableVertexAttribArray(0); // Enable the attribute
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0); // Configure input

attribute with location 0 and associate it with the VBO that is currently bound to
GL_ARRAY_BUFFER: vboHandle. Each vertex has 3 float values that we don’t want to normalize. The
fifth argument is the stride in bytes; the space between consecutive vertex attributes. The
last argument is the offset at which the position data begins in the buffer.

We can specify multiple vertex attributes in the same (currently bound) buffer, as long as you specify offset and stride in
the two glVertexAttribPointer() calls accordingly. These can be interleaved (i.e. pctpct), which may perform better
due to attributes being closely aligned in memory, or batched (i.e. ppcctt), which is often a little easier when loading from
file.
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4.2 EBOs
Indexed drawing avoids having to define duplicate vertices in the VBO in case triangles overlap (which is the case for
nearly all meshes) and is much more memory efficient in almost all cases. We define all unique vertices in a VBO, and
then reference those indices – called elements in OpenGL jargon – in an element buffer object (EBO) that defines how the
vertices constitute primitives.

unsigned int eboHandle;
glGenBuffers(1, &eboHandle);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, eboHandle);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW); // Copy indices

(an unsigned int[]) to the EBO

When we draw from indices, we use glDrawElements() rather than glDrawArrays().

4.3 VAOs
In order to avoid binding potentially hundreds of buffer objects and configuring potentially many vertex attributes for
each of those objects, OpenGL requires us to configure vertex array objects (VAOs). A VAO is basically a list of vertex
attributes, numbered from 0 to GL_MAX_VERTEX_ATTRIBS - 1, and for each stores its configuration and associated VBO –
both set by calls to glVertexAttribPointer() – and whether it is enabled – set by calls to glEnableVertexAttribArray()

/ glDisableVertexAttribArray(). It also stores at most one EBO. A VAO can be bound just like a VBO, and subsequent
vertex attribute calls from that point on will be stored inside the VAO. This means that you only have to configure vertex
attribute pointers once and whenever you want to draw the object, you can just bind the corresponding VAO.

unsigned int vaoHandle;
glGenVertexArrays(1, &vaoHandle);
glBindVertexArray(VAO);
// Create, fill, and configure VBO(s) as we did before
//...
glBindVertexArray(VAO); // Bind VAO whenever you want to draw it

When using EBOs, the last element buffer object that gets bound while a VAO is bound, is stored as the VAO’s element
buffer object (but make sure you don’t unbind the EBO before unbinding your VAO, since all glBindBuffer() calls with
target GL_ELEMENT_ARRAY_BUFFER are recorded).

5 Shaders

5.1 Shader objects
Shaders are programs that run many times in parallel on GPU cores, and that allow for configurable stages of the graphics
pipeline (which used to be a fixed-function pipeline). There are different types of shaders; for graphics, the most common
two types are vertex and fragment shaders. Shaders have to be dynamically compiled at run-time from their source code
(the process is identical for vertex and fragment shaders except for GL_VERTEX_SHADER vs. GL_FRAGMENT_SHADER):

unsigned int shaderHandle;
shaderHandle = glCreateShader(GL_VERTEX/FRAGMENT_SHADER); // Create shader object
glShaderSource(shaderHandle, 1, &shaderCode, NULL); // Attach shader source (as a C-string) to

shader object
glCompileShader(shaderHandle); // Compile shader

int success;
char infoLog[512];
glGetShaderiv(shaderHandle, GL_COMPILE_STATUS, &success); // Check if compilation succeeded

if(!success) {
glGetShaderInfoLog(shaderHandle, 512, NULL, infoLog); // Retrieve error message
std::cout << "Shader compilation error: " << infoLog;

}

5.2 Shader program objects
Both vertex and fragment shader objects have to be linked into a shader program:
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unsigned int shaderProgramHandle;
shaderProgramHandle = glCreateProgram();
glAttachShader(shaderProgram, vertexShaderHandle);
glAttachShader(shaderProgram, fragmentShaderHandle);
glLinkProgram(shaderProgramHandle);

glGetProgramiv(shaderProgramHandle, GL_LINK_STATUS, &success); // Check if linking succeeded
if(!success) {

glGetProgramInfoLog(shaderProgramHandle, 512, NULL, infoLog); // Retrieve error message
std::cout << "Shader linking error: " << infoLog;

}

glUseProgram(shaderProgram); // Activate shader program, which all rendering calls henceforth will
use

glDeleteShader(vertexShader); // Don’t need these after linking
glDeleteShader(fragmentShader);

And of course, we want to use our program to render stuff with:

glUseProgram(shaderProgram);
glBindVertexArray(VAO);
someOpenGLFunctionThatDrawsWhateverIsInOurVAOs(); // More about this in section Rendering

5.3 Shaders
Shaders are written in the OpenGL Shading Language (GLSL) GLSL is similar to C(++) but tailored for graphics and
matrix and vector manipulations. It supports C(++)’s basic types: bool, int, uint, float and double, but also has built-in
types for vectors and matrices: if n is the number of components, ranging from 2 to 4, vecn is a float vector, bvecn is a
boolean vector, ivecn is an integer vector, uvecn is a unsigned integer vector, and dvecn is a double vector. You can use
.x/.r/.s, .y/.g/.t, .z/.b/.p and .w/.a/.q to access their components. You can even combine them to get new vectors
of their components in any order using a feature called swizzling, e.g. .zyyx. You can also pass vectors to the constructors
of other vectors, e.g.:

vec2 vector1 = vec3(0.5, 0.7, 0.9);
vec4 vector2 = vec4(vect0r.xy, 0.0, 0.0);

A vertex is a 3D coordinate, but vertex data can also include other data like color. A primitive is the thing that we want
to draw and which the vertices constitute, e.g. GL_POINTS, GL_LINES, GL_TRIANGLES, etc. A fragment is (all the data for
rendering) a pixel that overlaps with a primitive. Note that multiple fragments may be processed for the same pixel, in
case multiple primitives overlap that pixel. At least a vertex shader and a fragment shader need to be defined.

Each shader generally looks like this (this happens to be a vertex shader):

#version 460 core // Declaration of GLSL version; corresponds with OpenGL version 4.6

in vec3 varIn; // Input variable
out vec2 varOut; // Output variable
uniform vec2 varUni; // Uniform variable
layout(binding = 0, std430) buffer BufferName { uint content[]; }; // Buffer binding

void main() {
varOut = varIn.xy * varUni; // Output variables after processing

}

Wherever the name and type of an output variable matches with an input variable of the next shader stage, OpenGL links
those variables (during the shader linking operation) and the variable can be passed along. When specifying a location
(by prepending e.g. layout(location = 0)), the names can differ (so you can actually put "In" or "Out" in the variable
names).
Uniforms are another way of passing (non-buffer/non-array) data to shaders, except they’re global (i.e. unique per shader
program object) and can be accessed from any shader at any stage, and they keep their value until they’re reset or updates.
If you don’t use a uniform in a particular shader, don’t declare it, because OpenGL will silently remove the variable from
the compiled version which may cause frustrating errors. To define it in our C++ code:

int uniformLocation = glGetUniformLocation(shaderProgramHandle, "varUni"); \\ Query location
glUseProgram(shaderProgramHandle); \\ Uniforms are set on the currently active program, so we need

to use it first
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glUniform4f(uniformLocation, 0.0f, greenValue, 0.0f, 1.0f);

The graphics pipeline is as follows:

1. Vertex shader, programmable: takes a vertex and does some processing on its attributes. In vertex shaders, in-
put variables are vertex attributes, which are received straight from the vertex data in the bound VAO. At most
GL_MAX_VERTEX_ATTRIBS input veriables are allowed (which is at least 16). Input variables/vertex attributes need to
be decorated with a location in order to connect them to the correct binding in the VAO, e.g. layout(location =

0)in vec3 posIn;.1

It should output coordinates via its predefined vec4 output variable gl_Position, which expects coordinates to
be in clip space coordinates.2 that range from -w to w (vertices outside that range are not rendered). These will be
transformed to screen-space coordinates via the viewport transform using the data you provided with glViewport(),
which are in turn transformed to fragments for the fragment shader. Other user-defined output variables (e.g. for
color) are of course also possible.

When drawing GL_POINTS as primitives, you can set vertex-specific point radii by setting the built-in float gl_PointSize

output variable. For that, you have to glEnable(GL_PROGRAM_POINT_SIZE). You can set a default point size in the
host code using glPointSize().

The built-in integer input variable gl_VertexID contains the ID of the current vertex, which is its index when doing
indexed drawing (i.e. with glDrawElements()) or simply its sequence number when drawing without indices (i.e.
with glDrawArrays()).

2. Primitive assembly stage, fixed: takes a collection of vertices that form the specified primitive and assembles those
into the specified primitive shape.

3. Geometry shader: takes a set of vertices that form a primitive and generates other shapes by emitting new vertices
to form new (or other) primitive(s). Because the shapes are generated dynamically on the GPU, this can be a lot
faster than defining these shapes yourself within vertex buffers. This shader is optional and usually left to the default
shader. Input and output qualifiers look like:

#version 330 core
layout (points) in;
layout (line_strip, max_vertices = 2) out;

When declaring the type of primitive input we’re receiving from the vertex shader, the input layout qualifier (in
front of in) can take any of the following primitive values:

• points when drawing GL_POINTS (at least 1 vertex)

• lines when drawing when drawing GL_LINES or GL_LINE_STRIP (at least 2 vertices)

• lines_adjacency when drawing GL_LINES_ADJACENCY or GL_LINE_STRIP_ADJACENCY (at least 4 vertices)

• triangles when drawing GL_TRIANGLES, GL_TRIANGLE_STRIP or GL_TRIANGLE_FAN (at least 3 vertices)

• triangles_adjacency when drawing GL_TRIANGLES_ADJACENCY or GL_TRIANGLE_STRIP_ADJACENCY (at least
6 vertices)

The output qualifier is any of:

• points

• line_strip; every two adjacent vertices are considered a line/segment along a path, so if you pass n vertices,
you will get n− 1 connected lines. E.g.: (0, 1), (1, 2), (2, 3), ...

• triangle_strip; every three adjacent vertices will form a triangle, so if you pass n vertices, you will get
n− 2 triangles. After the first triangle is drawn, each subsequent vertex generates another triangle next to the
first triangle. E.g.: (0, 1, 2), (1, 2, 3), (2, 3, 4), ...

You also need to set the maximum number of vertices it outputs (if you exceed this number, OpenGL won’t draw
the extra vertices), and of the ways to do that is within the layout qualifier of the out keyword.

1It is possible to omit the layout(location = 0) specifier and query for the attribute locations in your host code via
glGetAttribLocation(), but this is easier to understand and saves you (and OpenGL) some work.

2Technically, normalized device coordinates (NDC) are obtained after perspective division on the clip coordinates, but the two terms are sometimes
used interchangeably.
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To retrieve the output from the previous shader stage, GLSL gives us a built-in variable called gl_in that internally
(probably) looks something like an interface block:

in gl_Vertex
{

vec4 gl_Position;
float gl_PointSize;
float gl_ClipDistance[];

} gl_in[];

i.e., gl_in is an array of all vertices of a primitive, where each vertex is structured as above. Because we’re
operating on sets of vertices, any input data from the vertex shader is always represented as arrays of vertex data in
the geometry shader. For example, when we want to pass another vertex attribute, an interface block looks like this
in the vertex shader:

out vec3 color;

and this in the geometry shader:

in vec3 color[];

We generate new data by calling EmitVertex() for as many vertices that a primitive consists of, and then calling
EndPrimitive(), which collects the emitted vertices into the specified output render primitive. Each time we call
EndPrimitive(), the vector currently set to gl_Position – and the value/vector currently set to any custom defined
output variable, e.g. color – are added to the output primitive. This main() body translates a single input vertex in
two ways and combines the two emitted vertices into a single line strip:

void main() {
gl_Position = gl_in[0].gl_Position + vec4(-0.1, 0.0, 0.0, 0.0);
EmitVertex();

gl_Position = gl_in[0].gl_Position + vec4( 0.1, 0.0, 0.0, 0.0);
EmitVertex();

EndPrimitive();
}

4. Rasterization stage, fixed: takes a primitive and maps it to the corresponding (overlapping) pixels on the screen,
resulting in fragments. Also clips, i.e. discards, all fragments that are outside your view, increasing performance.

5. Fragment shader, programmable: takes fragment data/attributes which are the output variables from the vertex (or
geometry) shader interpolated over the primitive. It should calculates RGBA pixel colors (each component between
0 and 1), which should be output via a user-defined vec4 output variable/attribute. Usually the stage where all the
advanced OpenGL effects occur.
The built-in vec4 gl_FragCoord input variable contains the fragment’s screen-space coordinates in the x and y
components (with (0,0) being the bottom-left corner and whatever you specified in glViewport() in the top-right
corner) and the fragment depth in the z component. The built-in float output variable gl_FragDepth allows us to
overwrite the depth value in gl_FragCoord.z and specify our own value between 0.0 and 1.0. However, doing this
disables early depth testing and penalizes performance. OpenGL 4.2 allows to ameliorate this penalty and still do
some early depth testing by redeclaring the gl_FragDepth variable with a depth condition:

layout (<condition>)out float gl_FragDepth;

where <condition> may be any of the following:

• depth_any; the default value. Early depth testing is disabled.

• greater; you can only make the depth value larger compared to gl_FragCoord.z.

• depth_less; you can only make the depth value smaller compared to gl_FragCoord.z.

• depth_unchanged; if you write to gl_FragDepth, you will write exactly gl_FragCoord.z.

The fragment shader also has the discard command, which instructs the shader to stop processing and not output
the fragment to the color buffer.

The built-in gl_FrontFacing input variable is a bool that is true if the current fragment is part of a front face, and
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false otherwise.

6. Alpha test and blending stage, fixed: checks if the resulting fragment is in front or behind other objects and should
be discarded accordingly using the depth (and stencil) value and blends with the alpha value.

5.4 Interface blocks
Interface blocks are a handy mechanism for organizing input/output variables in shaders that are similar to structs. In the
vertex shader, this looks like:

out ExampleBlock
{

vec2 attr;
} blockOut;

If you write to blockOut.attr, it can be retrieved in the fragment shader as blockIn.attr if you declare the block as:

in ExampleBlock
{

vec2 attr;
} blockIn;

As you can see, the block name ExampleBlock needs to be the same in order for them to get linked, but the instance name
blockOut/blockIn can be different.

6 Rendering
When we compiled and linked our shaders, created and configured VAOs and associated VBOs, we can draw their con-
tents. Draw commands are typically placed after glUseProgram() and glBindVertexArray() commands. Different
drawing commands are:

glDrawArrays(GL_TRIANGLES, 0, 3); // Draw vertices as triangles directly from VAOs, starting at
index 0 and drawing 3 vertices

glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0); // Draw vertices as triangles using indexed
drawing from an EBO, drawing 6 vertices/indices of type unsigned int, starting at index 0 in
the EBO

glDrawArraysInstanced(GL_TRIANGLES, 0, 3); // Draws n instances of all vertices and advances a
counter gl_InstanceID per iteration

glDrawElementsInstanced(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0, n); // Draws n instances of all
elements and advances a counter gl_InstanceID per iteration

glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); // Tells OpenGL to draw both faces of polygons/triangles
as lines, i.e. this enables wireframe mode

glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); // Tells OpenGL to draw both faces normally. This is the
default, and running this disables wireframe mode

6.1 Instanced rendering
When drawing many instances of the same vertices, instanced drawing is much more performant, because we avoid
OpenGL’s prep work that needs to be done for each draw call (like telling the GPU which buffer to read data from, where
to find vertex attributes and all this over the relatively slow CPU to GPU bus). The ...Instanced versions of essentially
repeat the call n times:

for (int i = 0; i < n ; i++) {
instanceID = i;
glDrawArrays(mode, first, count);

}

where instanceID can be read in shaders as gl_InstanceID and can be used to index into buffer object to retrieve data
such as world coordinates/offsets or colors. Another option to get data in a shader that is called with an instanced drawing
call are instanced arrays, which are vertex attributes that are updated per instance rather than per vertex. Where regular
vertex attributes are retrieved per vertex and are useful for vertex-specific data, instanced vertex attributes are retrieved
per instance and are useful for instance-specific data. Instanced vertex attributes are declared as usual, and there is no
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need to index anything with gl_InstanceID. To make a vertex attribute instanced, we need to specify when to update the
attribute to the next value/vector:

glVertexAttribDivisor(2, x); \\ Tell OpenGL to update the vertex attribute bound to index 2 every x
instances. x = 0 is default and indicates updating per vertex

This command3 is specified along with the other command in Section 4.1.

6.2 Transparency
The alpha channel can be used to draw certain texels transparently. When we want certain parts of a texture entirely
invisible, we can discard those fragments in the fragment shader when an alpha value is below some threshold. For
such textures, set texture wrapping of transparent textures to GL_CLAMP_TO_EDGE, or else transparent alpha values will be
interpolated with solid values. To allow for partially transparent textures that blend with whatever is behind them (i.e.
make use of more than just 0 and 1 alpha values), we have to glEnable(GL_BLEND) and tell OpenGL how to blend:

glBlendFunc(GLenum sfactor, GLenum dfactor) tells OpenGL how to set the fragment factor ffragment (sfactor) and
buffer factor fbuffer (dfactor) colors in the function

cfragment ∗ ffragment + cbuffer ∗ fbuffer (2)

where cfragment is the fragment color vector output calculated by the fragment shader and cbuffer is the color vector currently
in the buffer. There are a plethora of possible options for both arguments, among them:

• GL_ZERO: factor is equal to 0.

• GL_ONE: factor is equal to 1.

• GL_SRC_COLOR: factor is equal to the fragment color vector cfragment.

• GL_ONE_MINUS_SRC_COLOR: factor is equal to 1− cfragment.

• GL_DST_COLOR: factor is equal to the buffer color vector cbuffer.

• GL_ONE_MINUS_DST_COLOR: factor is equal to 1− cbuffer.

• GL_SRC_ALPHA: factor is equal to the alpha component of the fragment color vector cfragment.

• GL_ONE_MINUS_SRC_ALPHA: factor is equal to 1− α of cfragment.

• GL_DST_ALPHA: factor is equal to the alpha component of the buffer color vector cbuffer.

• GL_ONE_MINUS_DST_ALPHA: factor is equal to 1− α of cbuffer.

GL_SRC_ALPHA and GL_ONE_MINUS_SRC_ALPHA are often used for sfactor and dfactor, respectively. Instead of adding the
weighted fragment and buffer colors, we can set a different operator, e.g. using glBlendEquation(GL_FUNC_SUBTRACT).
When drawing partially transparent textures, you have have to draw them in reversed order of their distance from the
camera (and after all opaque objects have been rendered), because else the depth test will discard fragments that should
be partially visible. Sorting the objects can be done using, for example, std::map.

6.3 Face culling
Each triangle has a winding order – the order in which its vertices are specified – and by default, triangles defined with a
counter-clockwise winding order are treated as facing the camera.
Face culling is a technnique that discards fragments from triangles that are not facing the camera, saving on performmance
if those fragments would’ve been rendered first (if they were rendered last, they would be discarded by depth testing
anyways). It is mostly useful for closed shapes, and is disabled by default, so use glEnable(GL_CULL_FACE) to enable it.
By default, back-faces are culled, but we could also cull front-faces instead using glCullFace(GL_FRONT). We can even
instruct OpenGL to treat clockwise faces as the front-faces using glFrontFace(GL_CW).

3There is also the glVertexBindingDivisor, which is highly similar. [Ga dit nog maar eens lekker samenvatten:
https://stackoverflow.com/questions/50650457/what-is-the-difference-between-glvertexattribdivisor-and-glvertexbindingdivisor]
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7 Textures
OpenGL offers multiple options for texture wrapping, which dictate what happens when coordinates fall outside the range:

• GL_REPEAT: repeats the texture image. Default behavior.

• GL_MIRRORED_REPEAT: same as GL_REPEAT but mirrors the image with each repeat.

• GL_CLAMP_TO_EDGE: clamps outside coordinates to the nearest edge.

• GL_CLAMP_TO_BORDER: fills outside coordinates with a user-specified color.

These coordinates are specified – for the currently bound texture – on a per coordinate basis as follows:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_MIRRORED_REPEAT);

For the GL_CLAMP_TO_BORDER we need to specify the bordor color:

float borderColor[] = { 1.0f, 1.0f, 0.0f, 1.0f };
glTexParameterfv(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, borderColor);

Another set of options concerns texture filtering, which is about how to interpolate texels (texture pixels), because texture
coordinates can be any floating point values. The most important options are:

• GL_NEAREST: nearest neighbour filtering; selects the texel of which the center is closest to the texture coordinate.

• GL_LINEAR: bilinear filtering; takes an interpolated value from the texture coordinate’s neighboring texels, weighted
by distance.

These can be set for both magnifying and minifying filtering operations, e.g.:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

7.1 Mipmaps
An important technique when rendering a high-resolution texture that may be viewed at varying distances from the camera
is called mipmapping. In that case, the color of a fragment which contains a large portion of the texture (because it is
far away) is difficult to determine, because there are so many texels overlapping the pixel. This will product artifacts and
waste memory bandwidth if the object is far away. A mipmap is a collection of texture images based on the same base
image, where each subsequent texture is twice as small compared to the previous one. After a certain distance threshold
from the camera, OpenGL will pick the next (smaller) mipmap texture that best suits the distance to the object. OpenGL
can automatically generate the different mipmap levels using glGenerateMipmaps(GL_TEXTURE_2D after texture creation.
We can replace the original filtering option for GL_TEXTURE_MIN_FILTER (though not for GL_TEXTURE_MAG_FILTER, since
mipmaps aren’t used for magnification) with the following options that define filtering between mipmap levels:

• GL_NEAREST_MIPMAP_NEAREST: takes the nearest mipmap to match the pixel size and uses nearest neighbor interpo-
lation for texture sampling.

• GL_LINEAR_MIPMAP_NEAREST: takes the nearest mipmap level and samples that level using linear interpolation.

• GL_NEAREST_MIPMAP_LINEAR: linearly interpolates between the two mipmaps that most closely match the size of a
pixel and samples the interpolated level via nearest neighbor interpolation.

• GL_LINEAR_MIPMAP_LINEAR: linearly interpolates between the two closest mipmaps and samples the interpolated
level via linear interpolation.

7.2 stb_image.h

For loading image files from disk, stb_image.h is a very popular single header image loading library that is loads most
popular file formats. Add the header file into your project and write

#define STB_IMAGE_IMPLEMENTATION // Modifies the header file such that it only contains the
relevant definition source code, effectively turning the header file into a .cpp file

#include "stb_image.h"

To load and decompress an image:
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int width, height, nrChannels; // stb_image.h will store properties in these
stbi_set_flip_vertically_on_load(true); // OpenGL expects the 0.0 coordinate on the y-axis to be on

the bottom of the image, but images usually have 0.0 at the top of the y-axis
unsigned char *data = stbi_load("image.png", &width, &height, &nrChannels, 0);

if(!data) {
std::cout << "Failed to load texture" << std::endl;
return -1;

}

7.3 Textue objects
To create a texture with the loaded image data:

unsigned int textureHandle;
glGenTextures(1, &textureHandle);
glBindTexture(GL_TEXTURE_2D, textureHandle);
// Set texture wrapping/filtering options here
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data); //

Specify texture currently bound to target GL_TEXTURE_2D and mipmap level 0 to have format
GL_RGB and the given width and height. The sixth argument should always be 0 (legacy stuff).
The last three arguments specify the format, datatype and actual data of the source image.

stbi_image_free(data); // Free image data

In order to apply/render this texture on a primitive, the vec2 texture coordinates (also known as UV coordinates) will have
to be passed to the vertex shader as a vertex attribute, and then in the vertex shader forward those to the fragment shader,
which will interpolate the coordinates. Texture coordinates range from 0 to 1 in the x and y (and z) axes – which OpenGL
calls the s and t (and r) axes when talking about textures. Coordinate (0,0) is in the lower-left corner.
Of course, the texture object itself has to be passed. We do this by assigning the texture to a texture unit, which is a
location but for textures4:

glUniform1i(glGetUniformLocation(shaderProgramHandle, "texIn"), 0); // Assign texture unit 0 to the
sampler uniform (this can be done outside render loop)

// ...inside render loop:
glActiveTexture(GL_TEXTURE0); // Activate texture unit 0 (goes up to at least GL_TEXTURE16, or,

GL_TEXTURE0 + 16) first before binding texture
glBindTexture(GL_TEXTURE_2D, textureHandle); // Bind the texture to the currently active texture

unit
glUseProgram(shaderProgramHandle); // Activate shader before setting uniforms

We can then sample this texture in the fragment shader using GLSL’s built-in sampler2D (or sampler1D or sampler3D)
data type, which we declare as a uniform:

#version 330 core
in vec2 texCoordIn; // Interpolated texture coordinate
out vec4 colorOut;
uniform sampler2D texIn;
// uniform sampler2D tex2In; // A potential texture bound to exture unit 2

void main() {
colorOut = texture(texIn, texCoordIn); // Sample texture

}

If we first render our scene to a framebuffer and then render the resulting texture to a full-screen quad, we can do post-
processing by using GLSL’s texture() function to sample fragments that surround the current fragment using a kernel (or
convolution matrix), which is a small matrix-like array of values centered on the current pixel that multiplies surrounding
pixel values by its kernel values and adds them all together to form a single value.

4If you only use one texture in a fragment shader, on most (but not all) drivers you do not need to assign it to a texture unit (avoiding a call to
glUniform1i() and glActiveTexture()), because those drivers bind texture unit GL_TEXTURE0 by default.)
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8 More Buffers

8.1 Color buffer
The color buffer is a two-dimensional buffer with the same dimensions as the viewport that stores all the fragment colors:
the visual output. It is identified by the constant GL_COLOR_BUFFER_BIT, e.g. when clearing it using glClear().

8.2 Depth buffer
The depth buffer is a two-dimensional buffer with the same dimensions as the viewport that stores per pixel how far its lat-
est rendered fragment is as a 16, 24 or 32 bit float between 0 and 1. It is identified by the constant GL_DEPTH_BUFFER_BIT,
e.g. when clearing it using glClear(). When depth testing is enabled (it’s disabled by default, so use glEnable(GL_DEPTH
_TEST)), new fragments at that pixel test their gl_FragCoord’s z value with the value in the depth buffer after the fragment
shader has run5 and after the stencil test. If the fragment is closer, it is rendered, else it is discarded. The depth value is
often obtained as follows:

d =
1/z − 1/n

1/f − 1/n
(3)

where z is the depth of the fragment in the view space, n is the depth of the near plane of the view frustum, and f is the
depth of the far plane of the view frustum. The reason for not simply using a linear depth buffer (=.

z−n
f−n ) is to have more

depth resolution near the near plane, where it is mostly needed. The farther away the fragment, the less accurate its depth.

If you only want to use the depth buffer but not write to it, make it read-only with glDepthMask(GL_FALSE). We can also
modify the comparison operators it uses for the depth test with glDepthFunc(GLenum func), where func is any of:

• GL_ALWAYS: the depth test always passes.

• GL_NEVER: the depth test never passes.

• GL_LESS: passes if the fragment’s depth value is less than the stored depth value. Default.

• GL_EQUAL: passes if the fragment’s depth value is equal to the stored depth value.

• GL_LEQUAL: passes if the fragment’s depth value is less than or equal to the stored depth value.

• GL_GREATER: passes if the fragment’s depth value is greater than the stored depth value.

• GL_NOTEQUAL: passes if the fragment’s depth value is not equal to the stored depth value.

• GL_GEQUAL: passes if the fragment’s depth value is greater than or equal to the stored depth value.

Z-fighting is a common visual artifact that occurs when there isn’t enough depth resolution to decide which of two prim-
itives should be rendered "on top", resulting weird glitchy patterns that are generally more noticeable when objects are
further away (because the depth buffer has less precision at larger z-values). Three tricks to prevent z-fighting are to
always have some margin between primitives, to set the near plane further away, and to use a higher precision depth
buffer.

8.3 Stencil buffer
The stencil buffer is a two-dimensional buffer with the same dimensions as the viewport that stores an eight-bit value
(so 256 values possible) per pixel. It is identified by the constant GL_STENCIL_BUFFER_BIT, e.g. when clearing it using
glClear(). Stencil testing occurs before depth testing, and similarly renders or discards fragments based on the respective
fragment and stencil values. Not all windowing libraries create a stencil buffer by default (but GLFW does). Enable it
using glEnable(GL_STENCIL_TEST). It is basically a freeform screen buffer that you can read and write to from the
fragment shader however you like, but generally you 1) enable stencil buffer writing to the stencil buffer 2) render objects
while updating the stencil buffer 3) disable stencil buffer writing 4) render (other) objects using stencil buffer to test. It can
for example be used to draw outlines around (selected) objects, or for rendering textures neatly inside rear-view mirrors.

glStencilFunc(GLenum func, GLint ref, GLuint mask) describes whether OpenGL should pass or discard fragments
based on the stencil buffer’s content. func sets the stencil test function, with the same possible options as the depth test’s
func. ref specifies the reference value to which the stencil buffer’s content is compared. mask specifies a mask that is

5Most GPUs support a hardware feature called early depth testing, which depth tests before the fragment shader. This has one restriction: the
fragment shader can’t write to gl_FragCoord.z anymore.
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ANDed with both the reference value and the stored stencil value before the test compares them, and is initially all-1s.

glStencilOp(GLenum sfail, GLenum dpfail, GLenum dppass) describes how to update the stencil buffer. sfail spec-
ifies the action to take if the stencil test fails, dpfail specifies the action to take if the stencil test passes but the depth
test fails, and dppass specifies the action to take if both the stencil and the depth test pass, with the actions any of the
following

• GL_KEEP: the currently stored stencil value is kept.

• GL_ZERO: the stencil value is set to 0.

• GL_REPLACE: the stencil value is replaced with the reference value set with glStencilFunc().

• GL_INCR: the stencil value is increased by 1 if it is lower than the maximum value.

• GL_INCR_WRAP: same as GL_INCR, but wraps it back to 0 as soon as the maximum value is exceeded.

• GL_DECR: the stencil value is decreased by 1 if it is higher than the minimum value.

• GL_DECR_WRAP: same as GL_DECR, but wraps it to the maximum value if it ends up lower than 0.

• GL_INVERT: bitwise inverts the current stencil buffer value.

8.4 Framebuffer
A framebuffer refers to the combination of color, depth, and stencil buffer. GLFW creates and configures the default
framebuffer when you create a window, but OpenGL offers the flexibility to define your own framebuffer as another target
to render to (called off-screen rendering), which can be useful for post-processing (by rendering to a texture and then
rendering that texture on a screen-filling quad), mirrors, etc. You always render to (and depth and stencil test from) the
currently bound GL_FRAMEBUFFER. If you were to omit for example a depth buffer, depth testing operations will not work.

unsigned int fboHandle;
glGenFramebuffers(1, &fboHandle);
glBindFramebuffer(GL_FRAMEBUFFER, fbo); // You can also bind to GL_READ_FRAMEBUFFER or

GL_DRAW_FRAMEBUFFER, for when you only want to read or render to it

An attachment is memory that acts as a buffer for the framebuffer – think of it as an image – that comes in two forms.

• A texture attachment has all rendering commands render to the texture as if it was a normal color/depth/stencil
buffer, after which we can use it in our shaders. Just create a texture as usual (although you likely want to pass
NULL to glTexImage2D()’s data parameter to only allocate data and not initialize it and you shouldn’t care about
wrapping or mipmapping) and attach it:

glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, textureHandle,
0); // Attach color attachment of type GL_TEXTURE_2D to the texture bound to
GL_FRAMEBUFFER with mipmap level 0

To attach a depth or stencil buffer, specify the texture’s format and internalformat arguments to glTexImage2D()

as GL_DEPTH_COMPONENT or GL_STENCIL_INDEX respectively, and specify the attachment argument to glFramebuffer

Texture2D() as GL_DEPTH_ATTACHMENT or GL_STENCIL_ATTACHMENT, respectively. You can also combine the two
into one GL_DEPTH_STENCIL_ATTACHMENT, in which case use GL_DEPTH24_STENCIL8 as internalformat, GL_DEPTH
_STENCIL as format, and GL_UNSIGNED_INT_24_8 as type.
If you want to render your scene to a texture of a different size, you need to call glViewport() again with the
texture dimensions before rendering to your framebuffer.

• A renderbuffer object is similar to a texture attachment but specifically meant as a framebuffer attachment, con-
trary to the general-purpose texture attachment. All the render data is written directly in a native format into the
buffer, avoiding any conversions to texture-specific formats, making it faster to write to and swap from (using
glfwSwapBuffers()) than texture attachment, but very slow to read from them directly. It is possible to read from
them via the slow glReadPixels(), which returns a specified area of pixels from the currently bound framebuffer,
but not directly from the attachment itself. Use renderbuffers if you don’t need to sample their values. For this
reason, they are mostly used as depth and stencil attachments, since depth and stencil testing use the native format,
but we don’t need to read from them/sample them. To create a renderbuffer:

unsigned int rboHandle;
glGenRenderbuffers(1, &rboHandle);
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glBindRenderbuffer(GL_RENDERBUFFER, rboHandle);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH24_STENCIL8, 800, 600); // Specify the

internal format, width and height of the renderbuffer bound to GL_RENDERBUFFER
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_RENDERBUFFER,

rbo); // Attach renderbuffer to framebuffer

Multiple texture buffers and renderbuffers can be bound interchangeably to the same framebuffer.

To use a framebuffer, it must be complete: it needs at least one (color, depth or stencil) buffer, it needs one color attach-
ment, all attachments need to be complete, and each buffer should have the same number of samples. Check this:

if(glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE) {
std::cout << "Error: framebuffer incomplete";
return -1;

}

glBindFramebuffer(GL_FRAMEBUFFER, 0); // Bind the default framebuffer again
glDeleteFramebuffers(1, &fbo); // Delete framebuffer if we don’t use it anymore

8.5 Uniform buffer objects
Uniform buffer objects are meant for global uniform variables that remain the same over any number of shader programs.
Each frame, they’re set only once in fixed GPU memory. For example, the projection and view matrices are often the
same for all shaders (in contrast with the view matrix), and can therefore be put into a uniform buffer object. When you
have many shader programs, this can avoid a lot of uniform setting, improving performance, code readability, and makes
changing uniforms easier. Another advantage is that you can set a lot more uniforms in shaders using uniform buffer
objects, because OpenGL can set only GL_MAX_VERTEX_UNIFORM_COMPONENTS regular uniforms.

unsigned int uboHandle;
glGenBuffers(1, &uboHandle);
glBindBuffer(GL_UNIFORM_BUFFER, uboHandle);
glBufferData(GL_UNIFORM_BUFFER, 152, NULL, GL_STATIC_DRAW); // Allocate 152 bytes of memory
glBufferSubData(GL_UNIFORM_BUFFER, 144, 4, &b) // Fill the uniform buffer (this sets only the

boolean in ExampleBlock)
glBindBuffer(GL_UNIFORM_BUFFER, 0); // Unbind
glBindBufferBase(GL_UNIFORM_BUFFER, 2, uboHandle); // Link uboHandle to binding point 2
// or, equivalently:
glBindBufferRange(GL_UNIFORM_BUFFER, 2, uboExampleBlock, 0, 152); // Link uboHandle to binding

point 2 with no offset. Allows to have multiple different uniform blocks linked to a single
uniform buffer object.

In order to use this in shaders, we have to link both the uniform buffer object and the uniform block index of the shader’s
uniform block to the same binding point. Prior to OpenGL 4.2, we had to do this manually:

unsigned int exampleIndex = glGetUniformBlockIndex(shaderProgramHandle, "ExampleBlock"); //
Retrieve uniform block index of ExampleBlock

glUniformBlockBinding(shaderProgramHandle, exampleIndex, 2); // Link uniform block ExampleBlock to
binding point 2

But since OpenGL 4.2, we can explicitly link uniform blocks to binding points in the shader code, as you’ll see next.
Every shader can then use the uniform buffer:

layout (std140, binding 2) uniform ExampleBlock
{

// base alignment // aligned offset
float value; // 4 // 0
vec3 vector; // 16 // 16 (offset must be multiple of 16 so 4->16)
mat4 matrix; // 16 // 32 (column 0)

// 16 // 48 (column 1)
// 16 // 64 (column 2)
// 16 // 80 (column 3)

float values[3]; // 16 // 96 (values[0])
// 16 // 112 (values[1])
// 16 // 128 (values[2])

bool boolean; // 4 // 144
int integer; // 4 // 148

};
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The variables can be accessed directly without prefixing the block name. Here we specify std140 as uniform block layout,
which specifies what parts of the reserved buffer memory correspond to which uniform variables in the shader. More
specifically, it specifies the spacing between – and therefore the offsets of – the variables (the sizes are clearly defined).
There are number of possible layouts:

• shared; the default layout, optimizes for space as long as the variables’ order remains intact. The offsets are
defined by the hardware and are consistently shared between multiple programs, hence the name. The downside is
that you’d need to query the offsets using glGetUniformIndices().

• packed; similar to shared, except allows the compiler to optimize uniform variables away from the uniform block,
which may differ per shader and hence there is no guarantee that the layout remains the same between programs
(not shared).

• std140; standardizes the variable offsets, which allows for figuring them out manually. Each variable has a prede-
fined base alignment equal to the space it takes including padding. Some base aligments are: int, float, bool are
four bytes; vec2 is eight byte; vec3, vec4 are sixteen bytes6; each element in a vectors has a base alignment of a
vec4, etc. The aligned offset of a variable must be equal to a multiple of its base alignment.

• std430

9 DSA
Even though OpenGL was designed as a finite state machine, OpenGL 4.5 introduced direct state access (DSA), which
allows for modifying objects without binding and unbinding them to the context. Up until now we have exclusively used
non-DSA function to illustrate how OpenGL operates, but in general, use DSA functions wherever possible. You not only
avoid a significant number of binds/unbinds/state switches (which can actually have performance impact), but it leads to
much cleaner and more readable code, because you directly indicate the object you wanna operate on. In addition, some
(kinda bad) functions have just not been ported to DSA, which is a nice way to avoid using them. Only draw calls still
require binding a VAO.

DSA functions can be recognized in a couple of ways. They always share a manpage with their non-DSA counterpart,
where the more verbose function name is always the DSA version. The DSA function name either fully spells the relevant
object type (e.g. Texture instead of Tex) or prepends Named to it. There are also the many glCreate...() functions that
are the DSA counterparts to glGen...() followed by glBind...().7

10 Leftovers
glGet<type>v() functions retrieve the value of a specified OpenGL parameter, e.g.:

int nrAttributes;
glGetIntegerv(GL_MAX_VERTEX_ATTRIBS, &nrAttributes); // Retrieve value
std::cout << "Max vertex attribs: " << nrAttributes; // Print value

glfwGetTime() retrieves the running time of the application in seconds.

11 Debugging
Debugging execution on a GPU is more difficult than debugging CPU code; there is no console to output text to, no
breakpoints to set on GLSL code, and no way of easily checking the state of GPU execution. There are two major ways
of retrieving debug info from the GPU: glGetError(), and debug output.

11.0.1 glGetError()

glGetError() is the old and more annoying way. Whenever you use OpenGL incorrectly, an OpenGL error is generated
and stored in a queue, until the error is retrieved. glGetError() fetches the next error in the queue and removes it. If the
error queue is empty, it will return GL_NO_ERROR, if not, it will return one of

6Implementations sometimes get the layout wrong for vec3 components, so either manually pad your vec3 variables or avoid them altogether.
7However, when mixing DSA with non-DSA functions, don’t forget to bind the relevant object anyways, because that’s what the non-DSA functions

need. Try to avoid this, though.
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• GL_INVALID_ENUM: an enumeration parameter is not legal.

• GL_INVALID_VALUE: a value parameter is not legal.

• GL_INVALID_OPERATION: the state for a command is not legal for its given parameters.

• GL_STACK_OVERFLOW: a stack pushing operation causes a stack overflow.

• GL_STACK_UNDERFLOW: when a stack popping operation occurs while the stack is at its lowest point.

• GL_OUT_OF_MEMORY: a memory allocation operation cannot allocate (enough) memory.

• GL_INVALID_FRAMEBUFFER_OPERATION: reading or writing to a framebuffer that is not complete.

OpenGL’s documentation lists for each function which error codes it can throw, and when. To fetch all of the errors
currently in the queue, you would need to loop:

GLenum err;
while((err = glGetError()) != GL_NO_ERROR) {
// Process err.
}

This only prints error numbers. It often makes sense to write a small helper function to easily print out the error strings
together with where the error check function was called:

void glAssert(const char *file, int line) {
GLenum errorCode;
while ((errorCode = glGetError()) != GL_NO_ERROR) {

std::string errorString;
switch (errorCode)
{

case GL_INVALID_ENUM: errorString = "INVALID_ENUM"; break;
case GL_INVALID_VALUE: errorString = "INVALID_VALUE"; break;
case GL_INVALID_OPERATION: errorString = "INVALID_OPERATION"; break;
case GL_STACK_OVERFLOW: errorString = "STACK_OVERFLOW"; break;
case GL_STACK_UNDERFLOW: errorString = "STACK_UNDERFLOW"; break;
case GL_OUT_OF_MEMORY: errorString = "OUT_OF_MEMORY"; break;
case GL_INVALID_FRAMEBUFFER_OPERATION: errorString = "INVALID_FRAMEBUFFER_OPERATION"; break;

}
std::cout << errorString << " | " << file << " (" << line << ")" << std::endl;

}
return errorCode;
}
#define glCheckError() glCheckError_(__FILE__, __LINE__)

__FILE__ and __LINE__ are preprocessor directive variables that get replaced during compile time with the respective
file and line they were compiled in. The downside to this method of debugging is that you need to spam glAssert()s
everywhere in your code where there could be an error in the queue, so that’s after almost every API call. If, for example,
you only glAssert() at the end of each frame, you wouldn’t know where the error came from.

11.0.2 Debug output

Debug output is an OpenGL extension that became part of core OpenGL since version 4.3. With it, OpenGL itself will
directly send an error or warning message – what they refer to as message events – to the user with a lot more details
compared to glCheckError(), and at the exact location where the message event occurs. This also avoids the need to
clutter your code with many glAssert()s.

Messages consist of:

• a GLenum indicating the source that produced the message. Any of GL_DEBUG_SOURCE_API, GL_DEBUG_SOURCE_WINDOW
_SYSTEM, GL_DEBUG_SOURCE_SHADER_COMPILER, GL_DEBUG_SOURCE_THIRD_PARTY, GL_DEBUG_SOURCE_APPLICATION,
GL_DEBUG_SOURCE_OTHER.

• a GLenum indicating the type of message. Any of GL_DEBUG_TYPE_ERROR, GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR,
GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR, GL_DEBUG_TYPE_PORTABILITY, GL_DEBUG_TYPE_PERFORMANCE, GL_DEBUG_TYPE
_MARKER, GL_DEBUG_TYPE_PUSH_GROUP, GL_DEBUG_TYPE_POP_GROUP, GL_DEBUG_TYPE_OTHER.

• a GLenum indicating the severity. Any of GL_DEBUG_SEVERITY_HIGH, GL_DEBUG_SEVERITY_MEDIUM, GL_DEBUG_SEVERITY
_LOW, GL_DEBUG_SEVERITY_NOTIFICATION.
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• a GLuint containing the ID.

• a null-terminated string describing the message.

You can enable debug output in two ways:

• Call glEnable(GL_DEBUG_OUTPUT. However, the OpenGL implementation may not generate messages this way.
Messages are only guaranteed in a...

• Create, or rather request, a debug context from GLFW by calling glfwWindowHint(GLFW_OPENGL_DEBUG_CONTEXT,

true) before calling glfwCreateWindow(). To check whether GLFW satisfied the request:

int flags; glGetIntegerv(GL_CONTEXT_FLAGS, &flags);
if (flags & GL_CONTEXT_FLAG_DEBUG_BIT)
{
// initialize debug output
}

Debug output starts enabled in a debug context. This context can be significantly slower compared to a non-debug
context, so when working on optimizations or releasing your application you want to remove GLFW’s debug request
hint.

We then pass OpenGL an error logging function callback (similar to GLFW’s input callbacks), which is called whenever
debug output detects an OpenGL error:

// OpenGL expects this exact callback function prototype
void APIENTRY debugOutputCallback(GLenum source,

GLenum type,
unsigned int id,
GLenum severity,
GLsizei length,
const char *message,
const void *userParam)

{

std::cout << "---------------" << std::endl;
std::cout << "Debug message (" << id << "): " << message << std::endl;

switch (source)
{

case GL_DEBUG_SOURCE_API: std::cout << "Source: API"; break;
case GL_DEBUG_SOURCE_WINDOW_SYSTEM: std::cout << "Source: Window System"; break;
case GL_DEBUG_SOURCE_SHADER_COMPILER: std::cout << "Source: Shader Compiler"; break;
case GL_DEBUG_SOURCE_THIRD_PARTY: std::cout << "Source: Third Party"; break;
case GL_DEBUG_SOURCE_APPLICATION: std::cout << "Source: Application"; break;
case GL_DEBUG_SOURCE_OTHER: std::cout << "Source: Other"; break;

} std::cout << std::endl;

switch (type)
{

case GL_DEBUG_TYPE_ERROR: std::cout << "Type: Error"; break;
case GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR: std::cout << "Type: Deprecated Behaviour"; break;
case GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR: std::cout << "Type: Undefined Behaviour"; break;
case GL_DEBUG_TYPE_PORTABILITY: std::cout << "Type: Portability"; break;
case GL_DEBUG_TYPE_PERFORMANCE: std::cout << "Type: Performance"; break;
case GL_DEBUG_TYPE_MARKER: std::cout << "Type: Marker"; break;
case GL_DEBUG_TYPE_PUSH_GROUP: std::cout << "Type: Push Group"; break;
case GL_DEBUG_TYPE_POP_GROUP: std::cout << "Type: Pop Group"; break;
case GL_DEBUG_TYPE_OTHER: std::cout << "Type: Other"; break;

} std::cout << std::endl;

switch (severity)
{

case GL_DEBUG_SEVERITY_HIGH: std::cout << "Severity: high"; break;
case GL_DEBUG_SEVERITY_MEDIUM: std::cout << "Severity: medium"; break;
case GL_DEBUG_SEVERITY_LOW: std::cout << "Severity: low"; break;
case GL_DEBUG_SEVERITY_NOTIFICATION: std::cout << "Severity: notification"; break;

} std::cout << std::endl;
std::cout << std::endl;
}
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With this callback, we can initialize debug output:

if (flags & GL_CONTEXT_FLAG_DEBUG_BIT)
{
glEnable(GL_DEBUG_OUTPUT);
glEnable(GL_DEBUG_OUTPUT_SYNCHRONOUS); // Tells OpenGL to directly call the callback function the

moment an error occurred
glDebugMessageCallback(debugOutputCallback, nullptr); // Register callback
glDebugMessageControl(GL_DEBUG_SOURCE_API, GL_DEBUG_TYPE_ERROR, GL_DEBUG_SEVERITY_HIGH, 0, nullptr,

GL_TRUE); // Only show messages from the OpenGL API that are errors and have a high severity
}

If a callback is not registered, then the messages are stored in a log. The last command, glDebugMessageControl(),
allows us to filter messages. It has two modes in which it can be used. In the first mode, as used above, it selects messages
based on source (first argument), type (second argument), and severity (third argument), and then – depending on the
last argument – those messages are set to be either emitted while all others are ignored or ignored while all others are
emitted. For any of the first three arguments, you can use GL_DONT_CARE as a wildcard to select any messages at that
level. The second mode of selecting messages uses (a pointer to) an array of specific message IDs to whitelist or blacklist
(again, depending on the last argument), and also requires that arrays size. In this mode, the severity specifier must be
GL_DONT_CARE. You can use any number of glDebugMessageControl() calls. This is a pretty essential call, since the
majority of message events are not that interesing (e.g. "you created a buffer").

By setting a breakpoint in debugOutputCallback() at a specific error type (or at the top of the function if you don’t care),
you can figure out the exact line or call an error occurred.

You can also push your own messages to the debug output system:

glDebugMessageInsert(GLenum source, GLenum type, GLuint id, GLenum severity, GLsizei length, const
char *message);

This is especially useful if you’re hooking into other application or OpenGL code that makes use of a debug output context.
Other developers can quickly figure out any reported bug that occurs in your custom OpenGL code. The source must be
either GL_DEBUG_SOURCE_APPLICATION or GL_DEBUG_SOURCE_THIRD_PARTY, which will never be used for implementation-
generated messages. The id is purely for the benefit of the user and may be any unsigned 32-bit integer value. length

indicates the length of the message, and may be negative, but then that message must be NULL-terminated.

11.0.3 Debugging GLSL

GLSL report syntax errors when compiling, but debugging runtime GLSL is difficult, as there are no breakpoints or easy
printing. You need to resort to methods such as sending all relevant variables in a shader directly to the fragment shader’s
output channel and inspecting the visual results. You can also display a framebuffer’s content(s) in some pre-defined
region of your screen, but this only works on texture attachments, not render buffer objects.

Because each vendor-specific driver has its own quirks and tidbits in how they enforce the OpenGL specification, if you
want to be sure your shader code runs on all kinds of machines, you can directly check your shader code against the
official specification using OpenGL’s GLSL reference compiler. The GLSL lang validator can easily check your shader
code by passing it as the binary’s first argument; if it detects no error, it returns no output.

Lastly, there are third party applications that often inject themselves in the OpenGL drivers and are able to intercept
all kinds of OpenGL calls, allowing you to profile OpenGL function usage, find bottlenecks, inspect buffer memory,
and display textures and framebuffer attachments. Examples are RenderDoc (open source tool that capture one or more
frames at the executable’s current state and shows all OpenGL commands, buffer storage, and textures in use), CodeXL
(for profiling), and NVIDIA Nsight (renders an overlay GUI system from within your application with a large host of
run-time statistics regarding GPU usage and the frame-by-frame GPU state, but only works on NVIDIA cards).
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